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Маълум A j∇×∇× =
r r

 к°ринишдаги магнит майдон тенгламаси айлана ток майдони учун 
ўзгарувчиларни бўлиш усули ёрдамида тороидал координатали таш±и дифференциал шакл 
доирасида ечими топган. Майдон манбаси сифатида ўзгармас токли айлана ³хал±а 
кўрилган. Кўрилаётган майдон манбадан ³ар томонлама эркин бўлганлиги учун, 
айланадан таш±ари, тенгламанинг ечилиши кифоя. Ротор майдонини ³исоблашни 
осонлаштириш учун вектор потенциали ягона Aϕ нолинчи ташкил этувчигли i

iA dxα =   ко-

векторга алмаштирилди, ягона нолга тенг бўлмаган компонентага эга бўлган. Майдон 
тенгламаси 0d d∗ α =  к°ринишда тасвирланган. £ал±адаги ушбу доимий учун ток 
потенициали ко-вектори ташкил этувчилар учун содда ифода олинди. Бу ечим асосида куч 
чизи±ларининг ра±амли к°риниши ±урилган. 

Уравнение магнитного поля, известное в виде A j∇×∇× =
r r

, решено для поля кругового 
токового кольца в рамках исчисления внешних дифференциальных форм в тороидальных 
координатах методом разделения переменных. В качестве источника поля рассматривалось 
круговое кольцо, по которому течет постоянный ток. Поскольку рассматриваемое поле свободно 
от источника везде, кроме самого кольца, достаточно было решить однородное уравнение. Для 
упрощения вычисления ротора поля векторный потенциал был заменен на ко-векторный 

i
iAdxα = , имеющий единственную ненулевую компоненту Aϕ. Уравнение поля было 

представлено в виде 0d d∗ α = . Получено простое выражение для этой компоненты ко-
векторного потенциала постоянного тока в кольце. На основе этого решения численно 
построены силовые линии. 

The magnetic field equation known in the form A j∇×∇× =
r r

 is solved in the framework of exterior 
differential forms in toroidal coordinates for the field of circular current loop by the method of variables 
separation. The source is assumed to be circular loop in form, which carries stationary current. Since 
the field is source free everywhere but the loop itself, the uniform equation was solved. To simplify 
completing the curl operation, the vector potential A is replaced with co-vector one i

iA dxα =  which in 
toroidal coordinates has single non-zero component Aϕ. The equation was represented in terms of 
exterior differential forms as 0d d∗ α = . A simple closed form expression for this component of the co-
vector potential produced by direct current carried by the loop, is presented. Lines of force of the field 
are obtained from the expression and built numerically. 

I. INTRODUCTION 

In his monograph “Classical Electrodynamics”, J.D. Jackson [1] wrote: The basic 
differential laws of magnetostatics are given by 

(4 / )B c j∇× = π
r r

,     0j∇ =
r

.                                            (1) 
The problem is how to solve them. This problem is of the same nature as numerous 

classical ones whose solutions form the subject of mathematical physics as it is exposed 
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in standard texts like [2]. The only difference between the equation (1) and a typical 
equation of mathematical physics is that the earlier is not vectorial. Classical methods of 
mathematical physics allow one to reduce scalar equations to ordinary differential ones 
by the method of variables separation, but they tell nothing about non-scalar ones like this 
one. Moreover, the curl operation encountered here is not known to everyone in its 
general form which could be applied in an arbitrary coordinate system. 

In fact, the only approach applied to the equation (1), is the method of Green 
functions [3-8]. At the same time, if the source possesses axial symmetry, the task always 
reduces to contructing a purely toroidal vector field which is either the vector potential or 
the strength, which in an appropriate coordinate system has single non-zero component, 
say Aϕ, where ϕ is azimuthal angle as one of coordinates. Therefore the task reduces to 
constructing a single function from a partial differential equation which is very similar to 
those solved in scalar theories. In this work we derive explicit form of the partial 
differential equation for the ϕ-component of the vector potential solve it by the method of 
variables separation and show that the solution obtained describes the field of circular 
current loop. 

 
 II. THE FIELD EQUATION IN TOROIDAL COORDINATES 

The first task is to derive explicit form of the partial differential equation for the     
ϕ-component of the desired vector potential in toroidal coordinates [2]. The main 
equation of magnetostatics has the form 

A j∇×∇× =
r r

.                                                        (2) 
Since majority of physicists are not familiar with the curl operation in this coordinate 

system, it is necessary to derive this equation from the scratch. It is easier to do this in 
terms of exterior differential forms [9] and hence to use this mathematical toolkit from 
the very beginning. Therefore we represent equation (2) as follows. The vector potential 
is replaced with co-vector i

iA dxα = , magnetic strength appears as 2-form of its exterior 
derivative H = dα and the master equation takes the form 

d d I∗ α = ,                                                            (3) 
where the current density I also appears as 2-form. In a coordinate system {u,v,ϕ} with 
azimuthal angle ϕ as one of coordinates, the field in question has single component 

( , )A u vϕ which is the only function to be found. Hence the equation (3) reduces to a 
partial differential equation and the next task is to separate variables so that it turns into 
one of two ordinary differential equation which can be solved as usual. Let {u,v,ϕ} be a 
coordinate system with ϕ being azimuthal angle about a straight line which serves as the 
axis of symmetry and the Lame coefficients of this systems are ,  u vh h  and ρ 
correspondingly (ρ stands for the distance from the axis of symmetry which always serves 
as this coefficient). Then, 1

uv h du= , 2
vv h dv=  and 3v d= ρ ϕ  constitute a field of 

orthonormal frames in the space. So, if the coordinate system under consideration is 
toroidal one, a field of orthonormal co-vector frames is presented by 

1

cosh cos
aduv
u v

=
−

,        2

cosh cos
advv
u v

=
−

,        3 sinh
cosh cos

a udv
u v

ϕ
=

−
.             (4) 

Such a frame is needed to facilitate the asterisk operation, which for 2-forms is 
defined by 
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( )a b ab c
cv v v∗ ∧ = ε .                                                  (5) 

Consider circular current loop, which coincides with the focal circle in toroidal 
coordinates. The co-vector potential of this source is strictly azimuthal, hence, is of the 
form 

( , )A u v dα = ϕ .                                                       (6) 
Now we derive the equation (3) for this particular co-vector. The exterior derivative 

is 
2

2 3 3 1
2

(cosh cos ) ( )
sinhv u v u

u vd A dv d A d du A v dv A v v
a u

−
α = ∧ ϕ − ϕ∧ = ∧ − ∧ , 

its asterisk conjugate obtained with use of the orthonormal frame (4, 5) is 
2

1 2
2

(cosh cos ) cosh cos( ) ( )
sinh sinhv u v u

u v u vd A v A v A du A dv
a u a u

∗ − −
α = − = − ,               (7) 

and finally, we obtain the left-hand side of the equation (3) as 

2

1 cosh cos cosh cos
sinh sinh
u v A u v Ad d du dv

a u a u u v a u v
∗ ⎡ ⎤∂ − ∂ ∂ − ∂⎛ ⎞ ⎛ ⎞α = − + ∧⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

, 

where the expression in brackets coincides with the left-hand side of the equation (3) 
represented in toroidal coordinates. Thus, the equation for the ϕ-component of the          
co-vector potential in these coordinates has the form 

cosh cos cosh cos 0
sinh sinh
u v A u v A

u a u u v a u v
∂ − ∂ ∂ − ∂⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

.                            (8) 

 
III. VARIABLES SEPARATION 

The second task is to reduce the equation (8) to ordinary differential equations. Note 
that the fracture appeared in this equation, is nothing but ρ−1, that is inverse distance from 
the axis of symmetry. Therefore, the left-hand side of the equation can be transformed as 
follows: 

2 2 2 2

2 2 2 2

cosh cos cosh cos 1 1
sinh sinh

1 1 .

u v A u v A A A
u a u u v a u v u u v v

A A
u v u v

⎛ ⎞ ⎛ ⎞∂ − ∂ ∂ − ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ρ ∂ ∂ ρ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ρ ρ ρ ρ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Note that cylindric coordinates z and ρ are Cartesian ones on planes ϕ = const. It is 
well known from analysis of complex variable; conformal transformation { , } { , }z u vρ →  
changes the Laplace operator as follows: 

2 2 2 2

2 2 2 2J
u v z

⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂ρ⎝ ⎠

, 

where J is Jacobian of the transformation which is equal to square of the Lame coefficient 
hu or hv. In this case we have 

2 2 2 2 2

2 2 2 2(cosh cos )
a

u v u v z
⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟∂ ∂ − ∂ ∂ρ⎝ ⎠
. 

Now we can obtain the last term of the equation as follows: 
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2 2 2 2 2

2 2 2 2 2 2

1 1 3
(cosh cos ) 4 sinh

a
u v u v z u

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ = + =⎜ ⎟ ⎜ ⎟∂ ∂ − ∂ ∂ρρ ρ ρ⎝ ⎠ ⎝ ⎠

.  

Therefore, the equation for the function A becomes 
2 2

2 2 2

1 3 0
4sinh

A
u v u

⎛ ⎞∂ ∂
+ − =⎜ ⎟∂ ∂ρ ρ⎝ ⎠

. 

It is convenient to denote  
A

Ψ =
ρ

                                                              (9) 

and suppose from physical considerations, that the function Ψ depends only on u. This 
property of the function to be found follows from the fact that near the loop u = ∞ the 
magnetic strength has only the v-component. Finally, we obtain the following ordinary 
differential equation for this single-variable function: 

2

2 2

3 0
4sinhu u

⎛ ⎞∂
− Ψ =⎜ ⎟∂⎝ ⎠

.                                                (10) 

The final task is to solve it. 
 
IV. RESULTS 

The equation obtained is similar to the equation, which was studied in quantum 
mechanics due to the modified Pöschl-Teller problem [10]. The desired exact solution of 
this equation is constructed below by the method used when solving this problem [11]. 
To obtain the desired analytical solution of the equation (10) we make the following 
substitution: 

( )
sinh
y u

u
Ψ =                                                           (11) 

and, first of all, calculate the first and second derivatives of the function Ψ(u) represented 
this way: 

1/2 3/2

cosh
sinh 2sinh

y y u
u u

′
′Ψ = − , 

2

1/2 3/2 5/2 1/2

cosh 3 cosh
sinh sinh 4sinh 2sinh

y y u y u y
u u u u

′′ ′
′′Ψ = − + − . 

Substituting this into the equation (10) yields the following equation for the function y(u): 
coth ( / 4) 0y y u y′′ ′− + = . 

This equation can be rewritten in the form 
1sinh 0

sinh 4
d dy yu
du u du

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

. 

To solve it we denote  
1 ( ),           sinh ( )

sinh
dy dff u u y u

u du du
= =                                     (12) 

and apply the operator in the left-hand side of this equation to the equation (11). This 
yields the following equation: 
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1 sinh 0
sinh 4

d df fu
u du du

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

. 

Solutions of this equation are well-known: 
1/2( ) (cosh )f u f u−=  

where 1/2 ( )f w−  stands for that one of Legendre functions 1/2 ( )P w−  or 1/2 ( )Q w−   which is 
finite under u = 0. For the reason specified below, we select the function 1/2 (cosh )P u− . 
Returning to the function y(u) via the equation (12) yields explicit form of this function 
which is 

1/2( ) (cosh )dy u P u
du −= , 

that gives explicit form of the desired solution of the equation (10): 

1/2
1 (cosh )

sinh
d P u
duu −Ψ =  

and it remains to return to the ϕ-component of the vector potential A via the equation (9): 

1/2
sinh( , ) (cosh )

cosh cos
u dA u v P u

u v du −=
−

.                                (13) 

Note that ϕ-component of the potential behaves approximately as 2 2sinh u ≈ ρ  near 
the axis ρ = 0. This expression makes it possible to obtain explicit form of the strength of 
the magnetic field produced by a circular current loop. Besides, it describes lines of force 
of the magnetic field, which are given by A(u,v)=const. Indeed, since, due to the equation 
(7), components of the magnetic strength are 

cosh cos
sinhu
u v dAH

a u dv
−

= ,           cosh cos
sinhv
u v dAH

a u du
−

= .                            (14) 

The strength H
r

 is tangent to the lines 
A(u,v)=const                                                             (15) 

in the half-planes ϕ = const. A plot of the lines of force is given on Fig. 1. Another figure, 
(Fig 2), which exposes lines of force of a point-like dipole obtained from the wellknown 
expression, allows one to compare the lines. 
 

Fig. 1. Lines of force of the field of circular 
current loop. 

Fig. 2. Lines of force of the field of a point-
like dipole. 

 
V. DISCUSSION 

Presently magnetic field of a circular current loop is known mostly in its integral 
form found in numerous texts on classical electrodynamics, for example, in the book [1], 
equation (5.36), where it is given by the expression: 
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2

2 2 1/20

1 cos
( 2arcsin cos )

dA
ca a r

π

ϕ

′ ′ϕ ϕ
=

′+ − θ ϕ∫ .                              (16) 

This expression provides rather a formal completion of the task because to obtain 
components of the field, one needs to make further calculations based on this form, 
particularly, to take a complicated integral that remained undone for many decades. 
Recently, calculations of the strength components have been completed in various 
coordinate systems [2]. The expressions obtained look not very complicated, but contain 
complicated substitutions that makes it difficult to use them. A need for a simpler ready-
to-use form of the vector potential and strength components looks quite evident. 

It must be pointed out that the subscript ϕ is misused in this formula. The point is 
that the genuine ϕ-component is not magnitude of the co-vector which was calculated in 
the equation (16). These two values are in the following relation: 

Aϕ = ρ α ,                                                          (17) 
so, to obtain the genuine ϕ one needs to multiply the right-hand side by ρ = r sin θ. 
However, behavior of this component near the axis ρ = 0 is known and does not coincide 
with that of the result obtained. Indeed, the field is close to uniform there, and component 
of the potential under consideration. As for the right-hand side of the equation (16), it 
does not vanish on the axis and even after multiplying by r sin θ, it does not do it 
quadratically as it should. Consequently, the integral itself is a wrong expression of the 
potential. 

Usually, closed form expressions come out from straightforward solutions of the 
field equation obtained by the method of variables separation. This method provides the 
complete entire linear space of solutions that is especially important in all linear theories. 
However, despite that is linear, no expressions obtained this way are found in the 
literature even for the case with zero right-hand side. In case of the field of circular 
current loop, the task is very similar to commonplace ones encountered in scalar physics 
because in this special case the vector to be found has single non-zero component and the 
equation (2) for it reduces to an ordinary differential one almost the same way as scalar 
ones. Nevertheless, the only approach applied in this case, consists in writing down the 
expression (16). The integral was taken in the work [8], however the integration 
procedure is not shown. The only component of the vector potential obtained this way is 
given by an expression which contains elliptic integrals of complicated expressions. 
Unlike all this, derivation of an exact closed from expression for the field as a 
straightforward solution of the master equation and, particularly, its result presented in 
this work, are more transparent and correct. 

 
VI. CONCLUSION 

The field of circular current loop is constructed as an analytic solution of the field 
equation in toroidal coordinates. Exact closed form expression for the single ϕ-
component of the (co-)vector potential and components of the field strength are obtained. 
Lines of force of the field are plotted and plots of these lines are compared to that of 
point-like magnetic dipole obtained another way. Visual comparison shows that in the 
point-like limit the earlier turns into the latter. This fact signifies that the solution 
obtained describes the field of circular current loop properly. Thus, in spite of numerous 
publications on the subject, magnetic field of circular current loop is obtained in this work 
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for the first time. The method for solving the field equation used in this work was 
presented before in our book [11]. 
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