Uzbek Journal of Physics
Vol.19(Nel) 2017 PP.7-13

ANALYTICAL SOLUTION OF THE MAGNETIC FIELD EQUATION
IN TOROIDAL COORDINATES

Zafar Turakulov

Ulugh Beg Astronomical Institute (UBAI), 33 Astronomicheskaya str., 100052, Tashkent,
Uzbekistan
(Received 21.08.2016)

MabnyM VxVxA=j KYpUHUIIZATH MATHUT MaiJOH TEHITIaMAacH aiilaHa TOK MaiOHM ydyH

Y3rapyBUMIapHU OYIUII yCynu €épAaMuaa TOPOUAAT KOOPAMHATAIM TAIKU TuddepeHIran maki
Joupacua edyuMmu TomnraH. MaiinoH MaHOacu cudaTtuga y3rapmac TOKIM aifjaHa XXajka
kypuwirad. Kypuwraérran wmaiinoH MaH0GafaH xap TOMOHJIAMa O3PKUH OYNraHIWIU Y4UyH,
aiilaHalaH TallKapu, TEHIIAMAHMHI edwmu Kudos. Porop MalnoHMHM XuCOOJIAIIHU

OCOHJIALITHPHII YIyH BEKTOP MOTEHIHAIH ArOHA A, HOJIMHYM TAIIKII STYBUMIIN o = Adx' Ko-
BEKTOpra aJMalITUPWIIU, STOHA HOJra TEHr OyiIMaraH KOMIIOHEHTara sra Oymran. MaiigoH
TeHrIamMacn d'do=0 KYpUHUIIZA TACBHPIAHIaH. Xaukagard yu0y [IOUMHUM YYYH TOK

MMOTEHHIINATIM KO-BEKTOPHU TAIKKIJI ATYBUMWIIAp yUyH coana udoaa onuHau. by eunm acocuga kyu
YU3UKJIAPUHUHT paKaMId KYPUHUIIN KYpPHIITaH.

VYpaBHEeHHE MarHWTHOTO IOJsI, M3BECTHOE B BHIAE VXV X A=), pemeHo Uil INOis KPyroBOro

TOKOBOTO KOJbI[a B pPaMKax HCUYHCICHUS BHEMIHUX IU(pQepeHnnanbHeIXx (OpM B TOPOHIAIBHBIX
KOOpAMHATaX METOJOM pa3JelieHUs] NepeMEeHHBIX. B KayecTBe HCTOYHHMKA IIOJISI pacCMaTpUBAIOCh
KPYToBO€ KOJIbLO, 10 KOTOPOMY T€UET IOCTOSHHBIIN TOK. [IocKOIbKy paccMaTpuBaeMoe IoJie CBOOOIHO
OT MCTOYHMKA BE37I€, KPOME CaMOro KOJbIa, JOCTATOYHO OBUIO PENINTh OJHOPOAHOE ypaBHeHue. J{is
YNPOILIEHHUs BBIYUCICHUS POTOpa MOJS BEKTOPHBIM MOTEHIMAN OBIT 3aMEHEH Ha KO-BEKTOPHBIH

o=Adx', WMEWWMH eIVHCTBCHHYI0 HEHYJCBYK) KOMIIOHEHTYy A, YpaBHeHHEe OIS OBUIO
npencrasieno B Buge d do.=0. TlodydeHO MPOCTOE BBIPAKEHHE I 3TOM KOMIIOHEHTHI KO-

BCKTOPHOT'O IIOTCHIHAJIa IIOCTOSIHHOI'O TOKa B KOJIbLE. Ha ocHoBe »sToOro PeIICHU YHUCIICHHO
TIIOCTPOEHBI CUJIOBBIC JINHUU.

The magnetic field equation known in the form VxV x A =7 is solved in the framework of exterior

differential forms in toroidal coordinates for the field of circular current loop by the method of variables
separation. The source is assumed to be circular loop in form, which carries stationary current. Since
the field is source free everywhere but the loop itself, the uniform equation was solved. To simplify

completing the curl operation, the vector potential A is replaced with co-vector one o = 4,dx’ which in
toroidal coordinates has single non-zero component 4, The equation was represented in terms of
exterior differential forms as d"da=0. A simple closed form expression for this component of the co-

vector potential produced by direct current carried by the loop, is presented. Lines of force of the field
are obtained from the expression and built numerically.

I. INTRODUCTION

In his monograph “Classical Electrodynamics”, J.D. Jackson [1] wrote: The basic
differential laws of magnetostatics are given by

VxB=(4n/c)j, Vj=0. (1)

The problem is how to solve them. This problem is of the same nature as numerous

classical ones whose solutions form the subject of mathematical physics as it is exposed
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in standard texts like [2]. The only difference between the equation (1) and a typical
equation of mathematical physics is that the earlier is not vectorial. Classical methods of
mathematical physics allow one to reduce scalar equations to ordinary differential ones
by the method of variables separation, but they tell nothing about non-scalar ones like this
one. Moreover, the curl operation encountered here is not known to everyone in its
general form which could be applied in an arbitrary coordinate system.

In fact, the only approach applied to the equation (1), is the method of Green
functions [3-8]. At the same time, if the source possesses axial symmetry, the task always
reduces to contructing a purely toroidal vector field which is either the vector potential or
the strength, which in an appropriate coordinate system has single non-zero component,
say A,, where ¢ is azimuthal angle as one of coordinates. Therefore the task reduces to
constructing a single function from a partial differential equation which is very similar to
those solved in scalar theories. In this work we derive explicit form of the partial
differential equation for the p-component of the vector potential solve it by the method of
variables separation and show that the solution obtained describes the field of circular
current loop.

I1. THE FIELD EQUATION IN TOROIDAL COORDINATES

The first task is to derive explicit form of the partial differential equation for the
¢-component of the desired vector potential in toroidal coordinates [2]. The main
equation of magnetostatics has the form

VxVxA= ] . (2)

Since majority of physicists are not familiar with the curl operation in this coordinate
system, it is necessary to derive this equation from the scratch. It is easier to do this in
terms of exterior differential forms [9] and hence to use this mathematical toolkit from
the very beginning. Therefore we represent equation (2) as follows. The vector potential
is replaced with co-vector o = 4,dx’, magnetic strength appears as 2-form of its exterior

derivative H = do. and the master equation takes the form

d'da=1, 3)
where the current density / also appears as 2-form. In a coordinate system {u,v,p} with
azimuthal angle ¢ as one of coordinates, the field in question has single component
A, (u,v) which is the only function to be found. Hence the equation (3) reduces to a

partial differential equation and the next task is to separate variables so that it turns into
one of two ordinary differential equation which can be solved as usual. Let {u,v,p} be a
coordinate system with ¢ being azimuthal angle about a straight line which serves as the
axis of symmetry and the Lame coefficients of this systems are 4, A, and p
correspondingly (p stands for the distance from the axis of symmetry which always serves
as this coefficient). Then, v' =hdu, v' =hdv and v'=pde constitute a field of
orthonormal frames in the space. So, if the coordinate system under consideration is
toroidal one, a field of orthonormal co-vector frames is presented by
S adu ’ Vo adv ’ v asinhud @ ‘ @)
coshu —cosv coshu —cosv coshu —cosv
Such a frame is needed to facilitate the asterisk operation, which for 2-forms is
defined by
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AV ) =g ®)
Consider circular current loop, which coincides with the focal circle in toroidal
coordinates. The co-vector potential of this source is strictly azimuthal, hence, is of the
form
o= A(u,v)do. (6)
Now we derive the equation (3) for this particular co-vector. The exterior derivative
is
(coshu —cosv)?

a’ sinhu

its asterisk conjugate obtained with use of the orthonormal frame (4, 5) is
2
“do = (C"Shj‘ —cosv) (AV = AV : (Adu— A dv), (7)
a”sinhu asinhu

and finally, we obtain the left-hand side of the equation (3) as
. 1| 0 (coshu—cosvod) O (coshu—cosv oA
d'do=—— +— dundv,

do=Advade—A,deAdu= (AV Adv' — AV AV,

coshu —cosv

2| ou\ asinhu ou) ov\ asinhu ov

a
where the expression in brackets coincides with the left-hand side of the equation (3)
represented in toroidal coordinates. Thus, the equation for the @-component of the
co-vector potential in these coordinates has the form

i[coshu —cosv GAJ i[coshu —cosv GA) 0

ou

ov

®)

asinhu  ou asinhu  Ov

1. VARIABLES SEPARATION

The second task is to reduce the equation (8) to ordinary differential equations. Note
that the fracture appeared in this equation, is nothing but p”', that is inverse distance from
the axis of symmetry. Therefore, the left-hand side of the equation can be transformed as

follows:
i coshu—cosvaAj+£ coshu—cosv@_AJ_i l@_A +£ l@_A B
ou asinhu ou) oOv asinhu 0Ov) oul\pou) Ov

p Ov
_ (e a4} Afd o1
Jolawr o’ \Jp ) Jplow' &) p
Note that cylindric coordinates z and p are Cartesian ones on planes ¢ = const. It is
well known from analysis of complex variable; conformal transformation {z,p} — {u,v}

changes the Laplace operator as follows:

o° o o* 0
P Rirwintd ekt B
ou” oOv oz- Op
where J is Jacobian of the transformation which is equal to square of the Lame coefficient
h, or h,. In this case we have

o> 0 a’ or o
— = | — .
ou>  ov*  (coshu—cosv) (622 op’ j

Now we can obtain the last term of the equation as follows:
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ou’ o' )Jp  (coshu—cosv)’\ 0z 0p® ) Jp 4psinh’u’
Therefore, the equation for the function 4 becomes
1 (o & 3 A

ﬁ(ﬁ*ﬁ‘—mhzuﬁ:o-

It is convenient to denote

VY=— C)
Jp
and suppose from physical considerations, that the function ¥ depends only on u. This
property of the function to be found follows from the fact that near the loop u = o the
magnetic strength has only the v-component. Finally, we obtain the following ordinary
differential equation for this single-variable function:

0 3
—_— ¥ =0. 10
[auz 4sinh2uj (10)

The final task is to solve it.

IV. RESULTS

The equation obtained is similar to the equation, which was studied in quantum
mechanics due to the modified Poschl-Teller problem [10]. The desired exact solution of
this equation is constructed below by the method used when solving this problem [11].
To obtain the desired analytical solution of the equation (10) we make the following
substitution:

y(u)
V= (11)
r/sinhu
and, first of all, calculate the first and second derivatives of the function W(u) represented
this way:

9o ' ycoshu
sinh">u  2sinh*?u’
y"  y'coshu 3ycosh’u %

\II” — _ .
sinh”?>u  sinh*?u  4sinh®*u  2sinh"?u

Substituting this into the equation (10) yields the following equation for the function y(u):
y'—y'cothu+(y/4)=0.
This equation can be rewritten in the form

sinhui[ R ﬂj+1=0
du\ sinhu du 4

To solve it we denote

1 dy . df
@ hul = 12
sinhu du Sw), S du yw) (12)

and apply the operator in the left-hand side of this equation to the equation (11). This
yields the following equation:
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;i(sinhuij-k%: 0.

sinhu du du

Solutions of this equation are well-known:
S ()= 1, (coshu)
where f,,(w) stands for that one of Legendre functions P,,(w) or Q ,,(w) which is
finite under u = 0. For the reason specified below, we select the function P,,(coshu).

Returning to the function y(u) via the equation (12) yields explicit form of this function
which is

d
y(u)=—~P,,(coshu),
du

that gives explicit form of the desired solution of the equation (10):

Y= ! iR,/z(coshu)

sinhu du

and it remains to return to the ¢p-component of the vector potential A via the equation (9):

Awy=— L p coshu. (13)
coshu —cosv du

Note that g-component of the potential behaves approximately as sinh”u ~ p® near

the axis p = 0. This expression makes it possible to obtain explicit form of the strength of
the magnetic field produced by a circular current loop. Besides, it describes lines of force
of the magnetic field, which are given by A(u,v)=const. Indeed, since, due to the equation
(7), components of the magnetic strength are

% _ coshu —cosv dA _ coshu —cosv dA

asinhu  dv asinhu  du
The strength H is tangent to the lines
A(u,v)=const (15)
in the half-planes ¢ = const. A plot of the lines of force is given on Fig. 1. Another figure,
(Fig 2), which exposes lines of force of a point-like dipole obtained from the wellknown

expression, allows one to compare the lines.

i

N

Fig. 1. Lines of force of the field of circular  Fig. 2. Lines of force of the field of a point-
current loop. like dipole.

V. DISCUSSION

Presently magnetic field of a circular current loop is known mostly in its integral
form found in numerous texts on classical electrodynamics, for example, in the book [1],
equation (5.36), where it is given by the expression:
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y _ 1 pom cos@'do’
® ca’ (a®+r*—2arcsinOcos¢’)

/2 ° (16)

This expression provides rather a formal completion of the task because to obtain
components of the field, one needs to make further calculations based on this form,
particularly, to take a complicated integral that remained undone for many decades.
Recently, calculations of the strength components have been completed in various
coordinate systems [2]. The expressions obtained look not very complicated, but contain
complicated substitutions that makes it difficult to use them. A need for a simpler ready-
to-use form of the vector potential and strength components looks quite evident.

It must be pointed out that the subscript ¢ is misused in this formula. The point is
that the genuine @-component is not magnitude of the co-vector which was calculated in
the equation (16). These two values are in the following relation:

4,=plol, (17)

so, to obtain the genuine ¢ one needs to multiply the right-hand side by p = r sin 0.
However, behavior of this component near the axis p = 0 is known and does not coincide
with that of the result obtained. Indeed, the field is close to uniform there, and component
of the potential under consideration. As for the right-hand side of the equation (16), it
does not vanish on the axis and even after multiplying by r sin 0, it does not do it
quadratically as it should. Consequently, the integral itself is a wrong expression of the
potential.

Usually, closed form expressions come out from straightforward solutions of the
field equation obtained by the method of variables separation. This method provides the
complete entire linear space of solutions that is especially important in all linear theories.
However, despite that is linear, no expressions obtained this way are found in the
literature even for the case with zero right-hand side. In case of the field of circular
current loop, the task is very similar to commonplace ones encountered in scalar physics
because in this special case the vector to be found has single non-zero component and the
equation (2) for it reduces to an ordinary differential one almost the same way as scalar
ones. Nevertheless, the only approach applied in this case, consists in writing down the
expression (16). The integral was taken in the work [8], however the integration
procedure is not shown. The only component of the vector potential obtained this way is
given by an expression which contains elliptic integrals of complicated expressions.
Unlike all this, derivation of an exact closed from expression for the field as a
straightforward solution of the master equation and, particularly, its result presented in
this work, are more transparent and correct.

VI. CONCLUSION

The field of circular current loop is constructed as an analytic solution of the field
equation in toroidal coordinates. Exact closed form expression for the single -
component of the (co-)vector potential and components of the field strength are obtained.
Lines of force of the field are plotted and plots of these lines are compared to that of
point-like magnetic dipole obtained another way. Visual comparison shows that in the
point-like limit the earlier turns into the latter. This fact signifies that the solution
obtained describes the field of circular current loop properly. Thus, in spite of numerous
publications on the subject, magnetic field of circular current loop is obtained in this work
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for the first time. The method for solving the field equation used in this work was
presented before in our book [11].
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